3.765 \(\int \frac{1}{\sqrt{d x} (a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=460 \[ \frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{21 \left (a+b x^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{21 \left (a+b x^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{21 \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{21 \left (a+b x^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

[Out]

(7*Sqrt[d*x])/(16*a^2*d*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + Sqrt[d*x]/(4*a*d*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x^2 +
 b^2*x^4]) - (21*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(32*Sqrt[2]*a^(11/4)*b
^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (21*(a + b*x^2)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1
/4)*Sqrt[d])])/(32*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (21*(a + b*x^2)*Log[Sqr
t[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (21*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(
1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.335974, antiderivative size = 460, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1112, 290, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{21 \left (a+b x^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{21 \left (a+b x^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{21 \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{21 \left (a+b x^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)),x]

[Out]

(7*Sqrt[d*x])/(16*a^2*d*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + Sqrt[d*x]/(4*a*d*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x^2 +
 b^2*x^4]) - (21*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(32*Sqrt[2]*a^(11/4)*b
^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (21*(a + b*x^2)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1
/4)*Sqrt[d])])/(32*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (21*(a + b*x^2)*Log[Sqr
t[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (21*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(
1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx &=\frac{\left (b^2 \left (a b+b^2 x^2\right )\right ) \int \frac{1}{\sqrt{d x} \left (a b+b^2 x^2\right )^3} \, dx}{\sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (7 b \left (a b+b^2 x^2\right )\right ) \int \frac{1}{\sqrt{d x} \left (a b+b^2 x^2\right )^2} \, dx}{8 a \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \int \frac{1}{\sqrt{d x} \left (a b+b^2 x^2\right )} \, dx}{32 a^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a} d-\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{32 a^{5/2} d^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a} d+\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{32 a^{5/2} d^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{64 a^{5/2} b^{3/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{64 a^{5/2} b^{3/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{64 \sqrt{2} a^{11/4} b^{5/4} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{64 \sqrt{2} a^{11/4} b^{5/4} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{21 \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{21 \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{32 \sqrt{2} a^{11/4} b^{5/4} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{32 \sqrt{2} a^{11/4} b^{5/4} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{7 \sqrt{d x}}{16 a^2 d \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\sqrt{d x}}{4 a d \left (a+b x^2\right ) \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{21 \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{21 \left (a+b x^2\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{32 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{21 \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{21 \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{64 \sqrt{2} a^{11/4} \sqrt [4]{b} \sqrt{d} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ \end{align*}

Mathematica [A]  time = 0.193036, size = 272, normalized size = 0.59 \[ \frac{\sqrt{x} \left (a+b x^2\right ) \left (56 a^{3/4} \sqrt [4]{b} \sqrt{x} \left (a+b x^2\right )+32 a^{7/4} \sqrt [4]{b} \sqrt{x}-21 \sqrt{2} \left (a+b x^2\right )^2 \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )+21 \sqrt{2} \left (a+b x^2\right )^2 \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )-42 \sqrt{2} \left (a+b x^2\right )^2 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )+42 \sqrt{2} \left (a+b x^2\right )^2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )\right )}{128 a^{11/4} \sqrt [4]{b} \sqrt{d x} \left (\left (a+b x^2\right )^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)),x]

[Out]

(Sqrt[x]*(a + b*x^2)*(32*a^(7/4)*b^(1/4)*Sqrt[x] + 56*a^(3/4)*b^(1/4)*Sqrt[x]*(a + b*x^2) - 42*Sqrt[2]*(a + b*
x^2)^2*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] + 42*Sqrt[2]*(a + b*x^2)^2*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sq
rt[x])/a^(1/4)] - 21*Sqrt[2]*(a + b*x^2)^2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x] + 21*Sqr
t[2]*(a + b*x^2)^2*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]))/(128*a^(11/4)*b^(1/4)*Sqrt[d*x
]*((a + b*x^2)^2)^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.233, size = 638, normalized size = 1.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x)

[Out]

1/128*(21*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^
(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*x^4*b^2+42*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*
d^2/b)^(1/4))/(a*d^2/b)^(1/4))*x^4*b^2+42*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))
/(a*d^2/b)^(1/4))*x^4*b^2+42*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/
2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*x^2*a*b+84*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1
/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*x^2*a*b+84*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/
2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*x^2*a*b+21*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^
(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*a^2+42*(a*d^2/b)^(1/4)*2^(1/
2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a^2+42*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2
)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a^2+56*(d*x)^(1/2)*x^2*a*b+88*(d*x)^(1/2)*a^2)/d*(b*x^2+a)/a^3
/((b*x^2+a)^2)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.99167, size = 682, normalized size = 1.48 \begin{align*} \frac{84 \,{\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac{1}{a^{11} b d^{2}}\right )^{\frac{1}{4}} \arctan \left (\sqrt{a^{6} d^{2} \sqrt{-\frac{1}{a^{11} b d^{2}}} + d x} a^{8} b d \left (-\frac{1}{a^{11} b d^{2}}\right )^{\frac{3}{4}} - \sqrt{d x} a^{8} b d \left (-\frac{1}{a^{11} b d^{2}}\right )^{\frac{3}{4}}\right ) + 21 \,{\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac{1}{a^{11} b d^{2}}\right )^{\frac{1}{4}} \log \left (a^{3} d \left (-\frac{1}{a^{11} b d^{2}}\right )^{\frac{1}{4}} + \sqrt{d x}\right ) - 21 \,{\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac{1}{a^{11} b d^{2}}\right )^{\frac{1}{4}} \log \left (-a^{3} d \left (-\frac{1}{a^{11} b d^{2}}\right )^{\frac{1}{4}} + \sqrt{d x}\right ) + 4 \,{\left (7 \, b x^{2} + 11 \, a\right )} \sqrt{d x}}{64 \,{\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x, algorithm="fricas")

[Out]

1/64*(84*(a^2*b^2*d*x^4 + 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*arctan(sqrt(a^6*d^2*sqrt(-1/(a^11*b*d
^2)) + d*x)*a^8*b*d*(-1/(a^11*b*d^2))^(3/4) - sqrt(d*x)*a^8*b*d*(-1/(a^11*b*d^2))^(3/4)) + 21*(a^2*b^2*d*x^4 +
 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*log(a^3*d*(-1/(a^11*b*d^2))^(1/4) + sqrt(d*x)) - 21*(a^2*b^2*d
*x^4 + 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*log(-a^3*d*(-1/(a^11*b*d^2))^(1/4) + sqrt(d*x)) + 4*(7*b
*x^2 + 11*a)*sqrt(d*x))/(a^2*b^2*d*x^4 + 2*a^3*b*d*x^2 + a^4*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d x} \left (\left (a + b x^{2}\right )^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b**2*x**4+2*a*b*x**2+a**2)**(3/2)/(d*x)**(1/2),x)

[Out]

Integral(1/(sqrt(d*x)*((a + b*x**2)**2)**(3/2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.2722, size = 505, normalized size = 1.1 \begin{align*} \frac{7 \, \sqrt{d x} b d^{3} x^{2} + 11 \, \sqrt{d x} a d^{3}}{16 \,{\left (b d^{2} x^{2} + a d^{2}\right )}^{2} a^{2} \mathrm{sgn}\left (b d^{4} x^{2} + a d^{4}\right )} + \frac{21 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{64 \, a^{3} b d \mathrm{sgn}\left (b d^{4} x^{2} + a d^{4}\right )} + \frac{21 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{64 \, a^{3} b d \mathrm{sgn}\left (b d^{4} x^{2} + a d^{4}\right )} + \frac{21 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \log \left (d x + \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{128 \, a^{3} b d \mathrm{sgn}\left (b d^{4} x^{2} + a d^{4}\right )} - \frac{21 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} \log \left (d x - \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{128 \, a^{3} b d \mathrm{sgn}\left (b d^{4} x^{2} + a d^{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x, algorithm="giac")

[Out]

1/16*(7*sqrt(d*x)*b*d^3*x^2 + 11*sqrt(d*x)*a*d^3)/((b*d^2*x^2 + a*d^2)^2*a^2*sgn(b*d^4*x^2 + a*d^4)) + 21/64*s
qrt(2)*(a*b^3*d^2)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b*d*
sgn(b*d^4*x^2 + a*d^4)) + 21/64*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqr
t(d*x))/(a*d^2/b)^(1/4))/(a^3*b*d*sgn(b*d^4*x^2 + a*d^4)) + 21/128*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)
*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*b*d*sgn(b*d^4*x^2 + a*d^4)) - 21/128*sqrt(2)*(a*b^3*d^2)^(1/4
)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*b*d*sgn(b*d^4*x^2 + a*d^4))